

Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

Massimo Gandola¹, Enrico Manuzzato¹, Matteo Perenzoni^{1,2}, Valerio Gili³, Dupish Dupish³, Frank Setzpfandt³, Andres Vega³, Markus Gräfe⁴, Leonardo Gasparini¹

- 1. Fondazione Bruno Kessler, Via Sommarive 18, Povo (TN), Italia
- 2. Now with Sony Europe Technology Development Centre, Trento, Italia
- 3. Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Jena, Germany
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany

International SPAD Sensor Workshop 2022

mgandola@fbk.eu

Fast Quantum Ghost imaging with SPADs Outline

- Introduction
- Novel architectures for ghost imaging
- Experimental results
- Conclusions

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures 1/16/2023 **2**

Introduction to Ghost Imaging Standard imaging

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures 1/16/2023 **3**

Introduction to Ghost Imaging Standard imaging

Resolution limit:

Sensitivity limit:

Detection:

Depends to the wavelength λ (*Rayleigh limit*)

$$S \approx \frac{1}{\sqrt{n}}$$
 Shot noise limit

Photon detection efficiency of the image sensor depends to λ

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

1/16/202

page

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

1/16/2023

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

Resolution limit:

Sensitivity limit:

Detection:

Depends to the wavelength of the Idler path λ_{s} (*Rayleigh limit*)

$$S \approx 1/n$$

Imaging with sensor working in the visible (signal) but exploring the object with other wavelength photons (idler) page

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

1/16/2023

Introduction to Ghost Imaging State of the art

Year	Reference	Pros
1995	Pittman et al., Phys. Rev. A 52, 5	First GI wit

T. B. Pittman et al., "Optical imaging by means of two-photon quantum entanglement", Physical Review A 52, 5, 1995

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

Cons

h SPDC

Point-to-point scan One color

page Q 1/16/2023

Introduction to Ghost Imaging State of the art

Year	Reference	Pros
1995	Pittman et al., Phys. Rev. A 52, 5	First GI wit
2015	Morris et al., Nat. Comm. 6	Two co

Peter A. Morris et al., "Imaging with a small number of photons", Nature communications, 2015

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

Cons

h SPDC

olors

Point-to-point scan One color

Slow electronics

1/16/2023

page

of the BBO crystal

Introduction to Ghost Imaging State of the art

Year	Reference	Pros	Cons
1995	Pittman et al., Phys. Rev. A 52, 5	First GI with SPDC	Point-to-point scan One color
2015	Morris et al., Nat. Comm. 6	Two colors	Slow electronics
2021	Pitsch et al., Appl. Opt. 60, 22	Two colors IR for idler path SPAD detector	Sequential scan Slow acquisition

Carsten Pitsch et al., "Quantum ghost imaging using asynchronous detection", Applied Optics, Vol. 60, No. 22, 2021

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

page

1/16/202

Introduction to Ghost Imaging Ideal ghost imaging setup

- High correlation rate
- High spatial resolution
- No false correlation
- Real time working operation

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures 1/16/2023 **12**

Introduction to Ghost Imaging Single photon detector requirements Object

Silicon Photon Avalanche Diode

- Up to tens of kfps for Mpixel array
- PDE between 5 30%
- DCR down to tens of Hz
- Dedicated electronics in the same wafer

- High correlation rate
- High spatial resolution
- No false correlation
- Real time working operation

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

5 **Ξ III**

6**∃Ⅲ**

III≡́

- High Photon Detection Efficiency (PDE)
- Large array size and small pixel
- Low Dark Count Rate (DCR)
- High frame rate and efficient readout

1/16/202

page

Fast Quantum Ghost imaging with SPADs Outline

- Introduction
- Novel architectures for ghost imaging
- Experimental results
- Conclusions

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures /16/2023 **14**

Novel architectures for Ghost Imaging FastGhost partner

Develop a **real-time** and **high-resolution** quantum imaging microscope working in the Middle-Infrared wavelength up to 7 µm

Coordinator and MIR ghost microscopy

Real-time quantum imaging

High-resolution single-photon counting camera

Single-photon detectors for the midinfrared

Optimized superconducting film for SNSPD detectors

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 899580.

1/16/20

page

Novel architectures for Ghost Imaging Black tape object characterization

1.4 µm (IR) wavelength photon-pair correlation spot acquired with **Ghost imaging** setup. Visible photons are collected by a silicon detector

Laser = 420 nmVisible wavelength = 600nm

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

Credits to:

page

1/16/202

The SPAD image sensor is an array of 32 x 32 pixels working at 600 nm developed in FBK^[1]

32 x 32 SPAD CMOS image sensor

- Synchronous working operation
- Pixel pitch 45 µm
- Array size 32 x 32
- Fill Factor 20 %
- 8-bits TDC for pixel
- Raster scan or row skipping readout method

[1] M. Zarghami et al., "A 32 × 32-Pixel CMOS Imager for Quantum Optics With Per-SPAD TDC, 19.48% Fill-Factor in a 44.64-µm Pitch Reaching 1-MHz Observation Rate," IEEE Journal of Solid-State Circuits, vol. 55, no. 10, pp. 2819-2830, Oct. 2020

bade

Develop a **real-time** and **high-resolution** quantum imaging

32 x 32 SPAD CMOS image sensor

- Synchronous working operation
- Pixel pitch 45 µm
- Array size 32 x 32
- Fill Factor 20 %
- 8-bits TDC for pixel
- Raster scan or row skipping readout method

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

microscope working in the Middle-Infrared wavelength up to 7 µm

Develop a **real-time** and **high-resolution** quantum imaging

32 x 32 SPAD CMOS image sensor

- Synchronous working operation
- Pixel pitch 45 µm
- Array size 32 x 32
- Fill Factor 20 %
- 8-bits TDC for pixel
- Raster scan or row skipping readout method

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

microscope working in the Middle-Infrared wavelength up to 7 µm

Requirements for image sensor: Asynchronous working operation

Develop a **real-time** and **high-resolution** quantum imaging

32 x 32 SPAD CMOS image sensor

- Synchronous working operation
- Pixel pitch 45 µm
- × Array size 32 x 32
- Fill Factor 20 %
- 8-bits TDC for pixel
- Raster scan or row skipping readout method

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

microscope working in the Middle-Infrared wavelength up to 7 µm

Requirements for image sensor:

- Asynchronous working operation • Pixel pitch 17 µm
 - Array size target 512 x 512

Develop a **real-time** and **high-resolution** quantum imaging

32 x 32 SPAD CMOS image sensor

- Synchronous working operation
- × Pixel pitch 45 µm
- × Array size 32 x 32
- Fill Factor 20 %
- 8-bits TDC for pixel
- Raster scan or row skipping readout method

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

microscope working in the Middle-Infrared wavelength up to 7 µm

Requirements for image sensor:

 Asynchronous working operation • Pixel pitch 17 µm • Array size target 512 x 512 Fill Factor > 20 %

Develop a **real-time** and **high-resolution** quantum imaging

32	2 x 32 SPAD CMOS image sensor	R
×	Synchronous working operation	•
×	Pixel pitch 45 µm	•
×	Array size 32 x 32	•
×	Fill Factor 20 %	•
x	8-bits TDC for pixel	•
\checkmark	Raster scan or row skipping readout method	

The image sensor used so far is not suitable

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

microscope working in the Middle-Infrared wavelength up to 7 μ m

equirements for image sensor:

Asynchronous working operation Pixel pitch 17 µm Array size target 512 x 512 Fill Factor > 20 % Fast readout

Novel architectures for Ghost Imaging Chip layout and the architectures

4.4 mm

T D X e I	Event - driven	2.7
re <i>lation</i>		mm

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

- LF 110 nm CMOS Technology
- 100 x 100 pixel each array
- Pixel size 17 μ m x 17 μ m
- 1.2V 3.3V Power supply transistors

page

- 4 Metal layers available
- 12 mm²

Novel architectures for Ghost Imaging In-pixel architecture

In-pixel correlation network

- Temporal correlation is performed in each pixel
- Bucket trigger propagated to the array
- Raster scan or Skip-zero readout method

OUTPUT BUS < (8 bits)

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

1/16/2023

page

Novel architectures for Ghost Imaging Looking back principle

Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

1/16/2023

Novel architectures for Ghost Imaging In-pixel implementations

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

Novel architectures for Ghost Imaging All-in pixel implementation

- Resistive quench network
- Temporal Correlation network in pixel
- Correlation memory to store the correlation until the readout operation

1/16/2023

pade

Novel architectures for Ghost Imaging Shared pixel implementation

- Temporal correlation network shared between four adjacent pixels
- Increasing active area of the SPAD and the fill-factor
- Spatial information is kept by the Status memory and the Multiplexer stages

1/16/2023

page

Novel architectures for Ghost Imaging Event-driven Architecture

In-pixel correlation network

- Temporal correlation is performed in each pixel
- Bucket propagate in the array
- Raster scan or Skip-zero readout method

Event – driven correlation

- Temporal correlation performed in the row/column periphery
- Bucket propagate in the periphery
- Each event is time-stamped trough the TDCs with 100 ps of resolution

OUTPUT BUS (8 bits)

Row and column TDCs are readout

Novel architectures for Ghost Imaging In-pixel implementations

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

Event - Driven architecture

1/16/2023

page

30

Novel architectures for Ghost Imaging Event-driven pixel

- Very simple pixel
- Active area of the SPAD is maximized
- Program SRAM for enable/disable pixel
- The output of the front-end is narrowed to speed-up the readout

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

1/16/2023

page

31

Novel architectures for Ghost Imaging Event-driven periphery

- Row and column 8-bits TDCs with 100 ps of resolutions
- TDC scale range from 0.1 ns up to 25.9 ns

1/16/2023

page

Fast Quantum Ghost imaging with SPADs Outline

- Introduction
- Novel architectures for ghost imaging
- Experimental results
- Conclusions

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures 1/16/2023

bade

Experimental results

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

Experimental results Experimental setup

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures ND IMAGE SENSORS

35

1/16/2023

Experimental results Delay compensation and Correlation window characterization

 V_{delay1} , V_{delay2} and $V_{window1}$, $V_{window2}$ are respectively the coarse and fine control for the delay compensation and the correlation window width

Parameter	Architecture	Min [ns]	Max [ns]	Jitter [%]
Delay compensation	All – in	10.4	29.4	3
t _{delay}	Shared	12	32.1	2
Correlation window	All – in	2.7	22.5	15
t _{window}	Shared	3	24.3	12

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

1/16/2023

Experimental results Features

Parameters	All-in	Shared	Event-driven
Correlation performed	Pixel	Pixel	Periphery
Size	100 x 50	100 x 50	100 x 100
Active Area [µm ²] * ¹	55.85	90.41	99.31
Fill Factor [%]	19.3	31.3	34.4
PDE Estimated [%] *2	3.7	5.9	6.5
Max correlation rate [Hz]	3M	3M	500k
Max frame rate (fps)	50k - 3M	50k - 3M	500k
Delay compensation [ns]	9 - 140	9 - 140	10 - 50
Window correlation [ns]	3 - 30	3 - 30	0.1 - 25.6
Output	Binary map	Binary map	X-Y proj time-stamp
Readout method	Raster Skip-zero	Raster Skip-zero	Raster
SRAM	Yes	Yes	Yes
Post processing	Νο	No	Yes
* ¹ Pixel Area = $289 \mu m^2$			

Pixel Area = $289 \,\mu m^2$

*² PDP = 19% estimated at 600 nm wavelength and 3V of excess bias

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures

page 37 1/16/2023

Fast Quantum Ghost imaging with SPADs Outline

- Introduction
- Novel architectures for ghost imaging
- Experimental results
- Conclusions

International SPAD Sensor Workshop – June 13 – 15 2022 Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures /16/2023

bade

Conclusions

- SPAD array specifically designed for the *FastGhost* european project aim to implement a microscope exploiting the ghost imaging advantages and working with wavelength up to 7 μ m (MIR)
- Two reduce-scaled correlation architectures presented: **In-pixel** and **Event-driven** architectures
- Preliminary experimental characterizations of the *In-pixel* correlation array
- Acquired scene simulating a ghost imaging setup

Conclusions **Next steps**

- Characterization of the Event-driven architecture
- Select the best architecture suitable for the extended version of 512 x 512 array size (submission expected at the end of 2022)
- Improving the readout in order to maximize the correlation rate even with a larger array
- Acquiring a "real" ghost imaging with FastGhost setup in Jena

thank you.

Stay tuned: https://www.fastghost.eu/#/

