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Introduction to Ghost Imaging

Depends to the wavelength λ (Rayleigh limit)

𝝀 = 𝟒𝟎𝟓 nm 𝝀 = 𝟖𝟏𝟎 nmShot noise limit𝑆 ≈ ൗ1 𝑛

Resolution limit: 

Sensitivity limit:

Detection: Photon detection efficiency of the image sensor depends to λ
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Introduction to Ghost Imaging

𝑆 ≈ ൗ1 𝑛
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Introduction to Ghost Imaging

T. B. Pittman et al., “Optical imaging by means of two-photon quantum entanglement”, Physical Review A 52,  5, 1995   

Year Reference Pros Cons

1995 Pittman et al., Phys. Rev. A 52, 5 First GI with SPDC
Point-to-point scan 

One color
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Peter A. Morris et al., “Imaging with a small number of photons”, Nature communications, 2015   

Year Reference Pros Cons

1995 Pittman et al., Phys. Rev. A 52, 5 First GI with SPDC
Point-to-point scan 

One color

2015 Morris et al., Nat. Comm. 6 Two colors Slow electronics
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Year Reference Pros Cons

1995 Pittman et al., Phys. Rev. A 52, 5 First GI with SPDC
Point-to-point scan 

One color

2015 Morris et al., Nat. Comm. 6 Two colors Slow electronics

2021 Pitsch et al., Appl. Opt. 60, 22 
Two colors

IR for idler path
SPAD detector

Sequential scan
Slow acquisition

Carsten Pitsch et al., “Quantum ghost imaging using asynchronous detection”, Applied Optics, Vol. 60, No. 22, 2021   
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High Photon Detection Efficiency (PDE) 

Large array size and small pixel

Low Dark Count Rate (DCR)

High frame rate and efficient readout

• High correlation rate 

• High spatial resolution

• No false correlation

• Real time working operation 

Object

LASER

Image sensor
SPDC

Laser

Time
Correlation 

network• Up to tens of kfps for Mpixel array  
• PDE between 5 – 30%
• DCR down to tens of Hz 
• Dedicated electronics in the same wafer

Silicon Photon Avalanche Diode
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Coordinator and 
MIR ghost microscopy

Real-time quantum 
imaging

High-resolution single-photon
counting camera

Single-photon detectors for 
the midinfrared

Optimized superconducting 
film for SNSPD detectors This project has received funding from the European Union's Horizon 2020 research

and innovation programme under grant agreement No 899580.

Develop a real-time and high-resolution quantum imaging 
microscope working in the Middle-Infrared wavelength up to 7 µm 
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Novel architectures for Ghost Imaging

Position 1: 
Tape completely blocking

infrared photons

Position 2:
Almost completely blocking

infrared photons

Position 3: 
Partly blocking infrared photons

Position 4: 
Tape not blocking infrared photons

Credits to:

1.4 µm (IR) wavelength photon-pair correlation spot acquired with Ghost imaging setup. 
Visible photons are collected by a silicon detector

Laser = 420 nm 
Visible wavelength = 600nm
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[1] M. Zarghami et al., "A 32 × 32-Pixel CMOS Imager for Quantum Optics With Per-SPAD TDC, 19.48% Fill-Factor in a 44.64-μm Pitch Reaching 1-MHz 
Observation  Rate,"  IEEE Journal of Solid-State Circuits, vol. 55, no. 10, pp. 2819-2830, Oct. 2020

The SPAD image sensor is an array of 32 x 32 pixels working at 600 nm 
developed in FBK [1]

32 x 32 SPAD CMOS image sensor
• Synchronous working operation
• Pixel pitch 45 µm
• Array size 32 x 32
• Fill Factor 20 %
• 8-bits TDC for pixel 
• Raster scan or row skipping readout method
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Develop a real-time and high-resolution quantum imaging 
microscope working in the Middle-Infrared wavelength up to 7 µm 

32 x 32 SPAD CMOS image sensor
• Synchronous working operation
• Pixel pitch 45 µm
• Array size 32 x 32
• Fill Factor 20 %
• 8-bits TDC for pixel 
• Raster scan or row skipping readout method
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Novel architectures for Ghost Imaging

Develop a real-time and high-resolution quantum imaging 
microscope working in the Middle-Infrared wavelength up to 7 µm 

Requirements for image sensor: 
• Asynchronous working operation 

32 x 32 SPAD CMOS image sensor
 Synchronous working operation
• Pixel pitch 45 µm
• Array size 32 x 32
• Fill Factor 20 %
• 8-bits TDC for pixel 
• Raster scan or row skipping readout method
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Novel architectures for Ghost Imaging

Develop a real-time and high-resolution quantum imaging 
microscope working in the Middle-Infrared wavelength up to 7 µm 

Requirements for image sensor: 
• Asynchronous working operation 
• Pixel pitch 17 µm
• Array size target 512 x 512 

32 x 32 SPAD CMOS image sensor
 Synchronous working operation
 Pixel pitch 45 µm
 Array size 32 x 32
• Fill Factor 20 %
• 8-bits TDC for pixel 
• Raster scan or row skipping readout method
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Novel architectures for Ghost Imaging

Develop a real-time and high-resolution quantum imaging 
microscope working in the Middle-Infrared wavelength up to 7 µm 

Requirements for image sensor: 
• Asynchronous working operation 
• Pixel pitch 17 µm
• Array size target 512 x 512 
• Fill Factor > 20 %

32 x 32 SPAD CMOS image sensor
 Synchronous working operation
 Pixel pitch 45 µm
 Array size 32 x 32
 Fill Factor 20 %
• 8-bits TDC for pixel 
• Raster scan or row skipping readout method
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Develop a real-time and high-resolution quantum imaging 
microscope working in the Middle-Infrared wavelength up to 7 µm 

Requirements for image sensor: 
• Asynchronous working operation 
• Pixel pitch 17 µm
• Array size target 512 x 512 
• Fill Factor > 20 %
• Fast readout

32 x 32 SPAD CMOS image sensor
 Synchronous working operation
 Pixel pitch 45 µm
 Array size 32 x 32
 Fill Factor 20 %
 8-bits TDC for pixel 
✓ Raster scan or row skipping readout method

The image sensor used so far is not suitable
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• LF 110 nm CMOS Technology

• 100 x 100 pixel each array

• Pixel size 17 µm x 17 µm 

• 1.2V - 3.3V Power supply transistors 

• 4 Metal layers available 

• 12 mm2
2

.7
 m

m

4.4 mm

In – pixel 
correlation

Event – driven 
correlation
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In-pixel correlation network

• Temporal correlation is performed in each pixel
• Bucket trigger propagated to the array
• Raster scan or Skip-zero readout method 



Looking back principle
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The position of the pixels with a correlation are 
readout

The Bucket delay has been evaluated around
20 ns
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All-in 
pixel

Shared 
pixel

In-pixel 
architecture
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Novel architectures for Ghost Imaging

• Program SRAM for enable/disable pixel

• Resistive quench network

• Temporal Correlation network in pixel

• Correlation memory to store the correlation until the readout operation
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Novel architectures for Ghost Imaging

• Temporal correlation network shared between four adjacent pixels

• Increasing active area of the SPAD and the fill-factor

• Spatial information is kept by the Status memory and the Multiplexer stages
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Novel architectures for Ghost Imaging

In-pixel correlation network

• Temporal correlation is performed in each pixel
• Bucket propagate in the array
• Raster scan or Skip-zero readout method 

Event – driven correlation 

• Temporal correlation performed in the row/column periphery 
• Bucket propagate in the periphery
• Each event is time-stamped trough the TDCs 

with 100 ps of resolution 
• Row and column TDCs are readout 
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Event - Driven 
architecture
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Novel architectures for Ghost Imaging

• Very simple pixel 

• Active area of the SPAD is maximized

• Program SRAM for enable/disable pixel

• The output of the front-end is narrowed to speed-up the readout



Event-driven periphery
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Novel architectures for Ghost Imaging

• Active line charge to speed up the readout

• Temporal Correlation network to delay SPAD and Bucket

• Row and column 8-bits TDCs with 100 ps of resolutions

• TDC scale range from 0.1 ns up to 25.9 ns



Outline

page
33International SPAD Sensor Workshop – June 13 – 15  2022  

Fast Quantum Ghost imaging with SPADs: from basics to experimental validation with smart sensor architectures
1/16/2023
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Experimental results

In-pixel 
architecture
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tdelay twindow

Parameter Architecture
Min 
[ns]

Max 
[ns]

Jitter
[%]

Delay compensation

tdelay

All – in 10.4 29.4 3

Shared 12 32.1 2

Correlation window

twindow

All – in 2.7 22.5 15

Shared 3 24.3 12

Vdelay1, Vdelay2 and Vwindow1, Vwindow2 are respectively the
coarse and fine control for the delay compensation and
the correlation window width
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Parameters All-in Shared Event-driven

Correlation performed Pixel Pixel Periphery

Size 100 x 50 100 x 50 100 x 100

Active Area [µm2] *1 55.85 90.41 99.31

Fill  Factor [%] 19.3 31.3 34.4

PDE Estimated [%] *2 3.7 5.9 6.5

Max correlation rate [Hz] 3M 3M 500k

Max frame rate (fps) 50k - 3M 50k - 3M 500k

Delay compensation [ns] 9 – 140 9 – 140 10 – 50

Window correlation [ns] 3 – 30 3 – 30 0.1 – 25.6

Output Binary map Binary map
X-Y proj

time-stamp

Readout method
Raster

Skip-zero
Raster

Skip-zero
Raster

SRAM Yes Yes Yes

Post processing No No Yes

*1 Pixel Area = 289 µm2

*2 PDP = 19% estimated at 600 nm wavelength and 3V of excess bias
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Conclusions

• SPAD array specifically designed for the FastGhost european project aim to 
implement a microscope exploiting the ghost imaging advantages and working with 
wavelength up to 7 µm (MIR)

• Two reduce-scaled correlation architectures presented: In-pixel and Event-driven
architectures

• Preliminary experimental characterizations of the In-pixel correlation array

• Acquired scene simulating a ghost imaging setup 
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• Characterization of the Event-driven architecture

• Select the best architecture suitable for the extended version of 512 x 512 array 
size (submission expected at the end of 2022) 

• Improving the readout in order to maximize the correlation rate even with a larger 
array

• Acquiring a “real” ghost imaging with FastGhost setup in Jena 



thank you.

Stay tuned: https://www.fastghost.eu/#/

https://www.fastghost.eu/#/
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